


South Africa

Carbon Tax Act, 2019 Act 15 of 2019

Legislation as at 23 May 2019 FRBR URI: /akn/za/act/2019/15/eng@2019-05-23

There may have been updates since this file was created.

PDF created on 18 March 2024 at 10:59.

About this collection

The legislation in this collection has been reproduced as it was originally printed in the Government Gazette, with improved formatting and with minor typographical errors corrected. All amendments have been applied directly to the text and annotated. A scan of the original gazette of each piece of legislation (including amendments) is available for reference.

This is a free download from LawLibrary and is presented in collaboration with the African Legal Information Institute, the Judicial Institute for Africa and the Laws.Africa Legislation Commons, a collection of African legislation that is digitised by Laws.Africa and made available for free.

www.lawlibrary.org.za | info@lawlibrary.org.za

www.laws.africa | info@laws.africa

There is no copyright on the legislative content of this document. This PDF copy is licensed under a Creative Commons Attribution 4.0 License (CC BY 4.0). Share widely and freely.

Carbon Tax Act, 2019 Contents

Part I – Definitions and general provisions relating to imposition of carbon tax	. 1
1. Definitions	1
2. Imposition of carbon tax	. 3
3. Persons subject to tax	. 3
4. Tax base	. 3
5. Rate of tax	6
6. Calculation of amount of tax payable	6
Part II – Allowances	7
7. Allowance for fossil fuel combustion	7
8. Allowance for industrial process emissions	7
9. Allowance in respect of fugitive emissions	7
10. Trade exposure allowance	. 8
11. Performance allowance	8
12. Carbon budget allowance	. 8
13. Offset allowance	8
Part III – Limitation of allowances	9
14. Limitation of sum of allowances	9
Part IV – Administration, tax period and payment of tax	. 9
15. Administration	. 9
16. Tax period	. 9
17. Payment of tax	. 9
Part V – Miscellaneous	, 9
18. Reporting	9
19. Regulations	10
20. Amendment of laws	10
21. Short title and commencement	10
Schedule 1	11
Schedule 2	42
Schedule 3 (Section 20)	62

South Africa

Carbon Tax Act, 2019 Act 15 of 2019

Published in Government Gazette 42483 on 23 May 2019

Assented to on 22 May 2019

Commenced on 1 June 2019 *Note: See section 21*

[This is the version of this document as it was from 23 May 2019 to 31 May 2019.]

(English text signed by the President)

ACT

To provide for the imposition of a tax on the carbon dioxide (CO₂) equivalent of greenhouse gas emissions; and to provide for matters connected therewith.

SINCE the causality of the increasing of anthropogenic greenhouse gas emissions in the atmosphere and the global climate change has been scientifically confirmed;

AND SINCE it has consequently become necessary to manage the inevitable climate change impact through interventions that build and sustain South Africa's social, economic and environmental resilience and emergency response capacity;

AND SINCE it has also become necessary to make a contribution to the global effort to stabilise greenhouse gas concentrations in the atmosphere at a level that avoids dangerous anthropogenic interference with the climate system within a timeframe that enables economic, social and environmental development to proceed in a sustainable manner;

AND SINCE the costs of remedying pollution, environmental degradation and consequent adverse health effects and of preventing, controlling or minimising further pollution, environmental damage or adverse health effects must be paid for by those responsible for harming the environment (the polluter pays principle);

AND SINCE government is desirous to utilise a package of measures in an effort to address the challenges posed by climate change;

AND SINCE this package of measures will be achieved by the deployment of a range of measures to support the system of desired emissions reduction outcomes, including the appropriate pricing of carbon and economic incentives, as well as the use of emissions offsets;

AND SINCE government is of the view that imposing a tax on greenhouse gas emissions and concomitant measures such as providing tax incentives for rewarding the efficient use of energy will provide appropriate price signals to help nudge the economy towards a more sustainable growth path,

BE IT THEREFORE ENACTED by the Parliament of the Republic of South Africa, as follows:-

Part I – Definitions and general provisions relating to imposition of carbon tax

1. Definitions

In this Act, unless the context otherwise indicates-

"**allowance**" means any amount allowed to be taken into account in terms of Part II, subject to <u>section 14</u>, for the purposes of determining the amount of carbon tax payable;

"carbon budget" means an amount of greenhouse gas emissions permitted, against which direct emissions arising from the operations of a person during a defined time period will be accounted for;

"carbon dioxide (CO₂) equivalent" means the concentration of carbon dioxide that would cause the same amount of radiative forcing (the difference of sunlight absorbed by the Earth and energy radiated back to space) as a given mixture of carbon dioxide and other greenhouse gases;

"**carbon tax**" means a tax on the carbon dioxide (CO₂) equivalent of greenhouse gas emissions imposed in terms of <u>section 2</u>;

"combustion" means the exothermic reaction of a fuel with oxygen;

"Commissioner" means the Commissioner for the South African Revenue Service;

"**emission factor**" means the average emission rate of a given greenhouse gas for a given source, relative to the activity data of a source stream assuming complete oxidation for combustion and complete conversion for all other chemical reactions;

"emissions" means-

- (a) the release of greenhouse gases or their precursors; or
- (b) the release of greenhouse gases and their precursors,

into the atmosphere, over a specified area and period of time;

"**emissions intensity**" means an indicator of the result of the measurement of the quantity of greenhouse gas emissions in relation to an activity;

"**emissions intensity benchmark**" means the result of the measurement in respect of an activity that creates greenhouse gas emissions—

- (a) expressed as a predetermined value of the quantity of specified greenhouse gas emissions;
- (b) in relation to an activity that is differentiated from other activities by means of a product, a type of fuel or a technology; and
- (c) compared against the quantity of greenhouse gas emissions,

in relation to an identical activity undertaken by another person;

"fugitive emissions" means emissions that are released into the atmosphere by any other means than through an intentional release through stack or vent including extraction, processing, delivery and burning for energy production of fossil fuels, including leaks from industrial plant and pipelines;

"**greenhouse gas**" means gaseous constituents of the atmosphere, both natural and anthropogenic, that absorb and re-emit infrared radiation, and includes carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur hexafluoride (SF₆);

"industrial process" means a manufacturing process that chemically or physically transforms materials;

"**IPCC**" means the Intergovernmental Panel on Climate Change established for the purposes of providing internationally co-ordinated scientific assessments of the magnitude, timing and potential environmental and socio-economic impact of climate change by the United Nations Environment Programme (UNEP) and the World Meteorological Organization (WMO) and endorsed by the United Nations by General Assembly Resolution 43/53 made at the 70th plenary meeting on 6 December 1988;

"**IPCC code**" means the source code in respect of an activity resulting in the emission of a greenhouse gas as stipulated in the "Guidelines for National Greenhouse Gas Inventories" (2006) issued by the IPCC;

"Minister" means the Minister of Finance;

"person" includes-

(a) a partnership;

- (b) a trust;
- (c) a municipal entity as defined in section 1 of the Local Government: Municipal Systems Act, 2000 (Act No. 32 of 2000); and
- (d) a public entity listed in Schedules 2, 3A, 3B, 3C and 3D to the Public Finance Management Act, 1999 (Act No. 1 of 1999);

"taxpayer" means a person liable for the carbon tax in terms of section 3; and

"tax period" means a period in respect of which tax is payable as prescribed under section 16.

2. Imposition of carbon tax

There must be levied and collected for the benefit of the National Revenue Fund, a tax to be known as the carbon tax.

3. Persons subject to tax

A person is-

- (a) a taxpayer for the purposes of this Act; and
- (b) liable to pay an amount of carbon tax calculated as contemplated in <u>section 6</u> in respect of a tax period as specified in <u>section 16</u>,

if that person conducts an activity in the Republic resulting in greenhouse gas emissions above the threshold determined by matching the activity listed in the column "Activity/ Sector" in Schedule 2 with the number in the corresponding line of the column "Threshold" of that table.

4. Tax base

- (1) The carbon tax must be levied in respect of the sum of the greenhouse gas emissions of a taxpayer in respect of a tax period expressed as the carbon dioxide equivalent of those greenhouse gas emissions resulting from fuel combustion and industrial processes, and fugitive emissions in accordance with the emissions factors determined in accordance with a reporting methodology approved by the Department of Environmental Affairs.
- (2) If a reporting methodology approved by the Department of Environmental Affairs for the purposes of determining emission factors does not exist in respect of the calculation of greenhouse gas emissions resulting from fuel combustion, and industrial processes, and fugitive emissions the carbon tax must be levied in respect of the sum of the greenhouse gas emissions of a taxpayer in respect of a tax period expressed as the carbon dioxide equivalent of those greenhouse gas emissions resulting from—
 - (a) fuel combustion in respect of that tax period that is a number constituted by the sum of the respective numbers determined for each type of fuel in respect of which a greenhouse gas is emitted in respect of that tax period which respective numbers must be determined in accordance with the formula:

 $E = (A \times B)$

- (i) "E" represents the number to be determined;
- "A" represents the mass of any one type of the fuel expressed in tonne that is the source of the greenhouse gas emission, other than any fuel utilised for the purposes of international aviation and maritime transport;

(iii) **"B**" represents the greenhouse gas emission factor in carbon dioxide equivalent per tonne that must be determined in accordance with the formula:

$$\mathbf{X} = \{(\mathbf{C} \ \mathbf{x} \ 1) + (\mathbf{M} \ \mathbf{x} \ 23) + (\mathbf{N} \ \mathbf{x} \ 296)\} \ \mathbf{x} \ \mathbf{D}$$

in which formula-

- (aa) "**X**" represents the number to be determined;
- (bb) "C" represents the carbon dioxide emissions of a fuel type determined by matching the fuel type listed in the column "fuel type" in Table 1 of Schedule 1 with the number in the corresponding line of the column "CO₂ (KGCO₂/TJ)" of that table;
- (cc) "**M**" represents the methane emissions of a fuel type determined by matching the fuel type listed in the column "fuel type" in Table 1 of Schedule 1 with the number in the corresponding line of the column " CH_4 (KGCH₄/TJ)" of that table';
- (dd) "**N**" represents the Nitrous Oxide emissions of a fuel type determined by matching the fuel type listed in the column "fuel type" in Table 1 of Schedule 1 with the number in the corresponding line of the column "N₂O (KGN₂O/TJ)" of that table; and
- (ee) "D" represents the default calorific value (terajoule per tonne) of a fuel type determined by matching the fuel type listed in the column "fuel type" in Table 1 of Schedule 1 with the number in the corresponding line of the column "DEFAULT CALORIFIC VALUE (TJ/TONNE)" of that table;
- (b) fugitive emissions that is a number constituted by the sum of the respective numbers determined for each type of commodity, fuel or technology in respect of which the greenhouse gas is emitted in respect of a tax period which respective numbers must be determined in accordance with the formula:

 $F = (N \times Q)$

in which formula-

- (i) **"F**" represents the number to be determined;
- "N" represents the mass expressed in tonne in the case of solid fuels or the volume of each type of fuel expressed in cubic metres in the case of fuels other than solid fuels, in respect of the greenhouse gas emission; and
- (iii) "**Q**" represents the greenhouse gas emission factor in carbon dioxide equivalent per tonne or cubic metres that must be determined in accordance with the formula:

$$\mathbf{X} = (\mathbf{C} \ \mathbf{x} \ 1) + (\mathbf{M} \ \mathbf{x} \ 23) + (\mathbf{N} \ \mathbf{x} \ 296)$$

- (aa) "**X**" represents the number to be determined;
- (bb) "C" represents the carbon dioxide emissions of a fuel type determined by matching the fuel type listed in the column "fuel type" in Table 2 of Schedule 1 with the number in the corresponding line of the column "CO₂" of that table;
- (cc) "**M**" represents the methane emissions of a fuel type determined by matching the fuel type listed in the column "fuel type" in Table 2 of Schedule 1 with the number in the corresponding line of the column "CH₄" of that table;

- (dd) "N" represents the Nitrous Oxide emissions of a fuel type determined by matching the fuel type listed in the column "fuel type" in Table 2 of Schedule 1 with the number in the corresponding line of the column "N₂O" of that table; and
- (c) industrial process in respect of a tax period that is a number constituted by the sum of the respective numbers determined for each type of commodity, fuel or technology in respect of which the greenhouse gas is emitted in respect of that tax period which respective numbers must be determined in accordance with the formula:

= (G x H)

in which formula-

- (i) "P" represents the amount to be determined that must not be less than zero;
- "G" represents the mass of each raw material used or product produced expressed in tonne in respect of which the greenhouse gas is emitted in respect of that tax period; and
- (iii) "H" represents the greenhouse gas emission factor in carbon dioxide emissions equivalent per tonne for each raw material used or product produced that must be determined in accordance with the formula:

- (aa) "**X**" represents the number to be determined;
- (bb) "C" represents the carbon dioxide emissions of a raw material or product determined by matching the fuel type listed in the column "SOURCE CATEGORY ACTIVITY / RAW MATERIAL / PRODUCT" in Table 3 of Schedule 1 with the number in the corresponding line of the column "CO₂/tonne product" of that table;
- (cc) "**M**" represents the methane emissions of a raw material or product determined by matching the fuel type listed in the column "SOURCE CATEGORY ACTIVITY / RAW MATERIAL / PRODUCT" in Table 3 of Schedule 1 with the number in the corresponding line of the column "CH₄/tonne product" of that table;
- (dd) "N" represents the Nitrous Oxide emissions of a raw material or product determined by matching the fuel type listed in the column "SOURCE CATEGORY ACTIVITY / RAW MATERIAL / PRODUCT" in Table 3 of Schedule 1 with the number in the corresponding line of the column "N₂O/ tonne product" of that table;
- (ee) "H" represents the Hexafluoroethane (C_2F_6) emissions of a raw material or product determined by matching the fuel type listed in the column "SOURCE CATEGORY ACTIVITY / RAW MATERIAL / PRODUCT" in Table 3 of Schedule 1 with the number in the corresponding line of the column " C_2F_6 /tonne product" of that table;
- (ff) "T" represents the carbon tetrafluoride (CF₄) emissions of a raw material or product determined by matching the fuel type listed in the column "SOURCE CATEGORY ACTIVITY / RAW MATERIAL / PRODUCT" in Table 3 of Schedule 1 with the number in the corresponding line of the column "CF₄/tonne product" of that table; and

(gg) "S" represents the Sulphur hexafluoride (SF₆) emissions of a raw material or product determined by matching the fuel type listed in the column "SOURCE CATEGORY ACTIVITY / RAW MATERIAL / PRODUCT" in Table 3 of Schedule 1 with the number in the corresponding line of the column "SF₆/tonne product" of that table.

5. Rate of tax

- (1) The rate of the carbon tax on greenhouse gas emissions must, subject to subsections (2) and (3), be imposed at an amount of R120 per ton carbon dioxide equivalent of the greenhouse gas emissions of a taxpayer.
- (2) The rate of tax specified in subsection (1) must be increased by the amount of the consumer price inflation plus two per cent for the preceding tax period as determined by Statistics South Africa per year until 31 December 2022.
- (3) The rate of tax must be increased after 31 December 2022 by the amount of the consumer price inflation for the preceding tax year as determined by Statistics South Africa.

6. Calculation of amount of tax payable

(1) Subject to subsection (2), the amount of tax payable by a taxpayer in respect of a tax period must be calculated in accordance with the formula:

$$\mathbf{X} = \langle \{ [(\mathbf{E} - \mathbf{S}) \ \mathbf{x} \ (\mathbf{1} - \mathbf{C})] \cdot [\mathbf{D} \ \mathbf{x} \ (\mathbf{1} - \mathbf{M})] \} + \{ \mathbf{P} \ \mathbf{x} \ (\mathbf{1} - \mathbf{J}) \} + \{ \mathbf{F} \ \mathbf{x} \ (\mathbf{1} - \mathbf{K}) \} \rangle \mathbf{x} \ \mathbf{R}$$

- (a) "X" represents the amount to be determined that must not be less than zero;
- (b) "E" represents the number in respect of the total fuel combustion related greenhouse gas emissions of the taxpayer in respect of that tax period expressed as a carbon dioxide equivalent determined in terms of <u>section 4(1)</u> or (2)(a);
- (c) "S" represents the number in respect of greenhouse gas emissions, expressed in terms of carbon dioxide equivalent that were sequestrated in respect of that tax period as verified and certified by the Department of Environmental Affairs;
- (d) "**C**" represents a number equal to the sum of the percentages of allowances determined under sections <u>7</u>, <u>10</u>, <u>11</u>, <u>12</u>, and <u>13</u> in respect of that tax period, subject to <u>section 14</u>;
- (e) "**D**" represents the number in respect of the petrol and diesel related greenhouse gas emissions of that taxpayer in respect of that tax period expressed as a carbon dioxide equivalent, determined in terms of <u>section 4(1)</u> or (2)(a);
- (f) "**M**" represents a number equal to the sum of the percentages of the allowances determined under sections <u>7</u>, <u>12</u> and <u>13</u> in respect of that tax period, subject to <u>section 14</u>;
- (g) "**P**" represents the number in respect of the total industrial process related greenhouse gas emissions of the taxpayer in respect of that tax period expressed as a carbon dioxide equivalent determined in terms of $\frac{1}{9}$ section $\frac{4}{1}$ or $\frac{2}{2}$;
- (h) "J" represents a number equal to the sum of the percentages of the allowances determined under sections <u>8</u>, <u>10</u>, <u>11</u>, <u>12</u> and <u>13</u> in respect of that tax period, subject to <u>section 14</u>;
- (i) **"F**" represents the number in respect of the total fugitive greenhouse gas emissions of the taxpayer in respect of that tax period expressed as a carbon dioxide equivalent determined in terms of <u>section 4(1)</u> or (2)(b);
- (j) "K" represents the sum of the percentages of the allowances determined in terms of sections <u>7, 9, 10, 11, 12</u> and <u>13</u> in respect of that tax period, subject to <u>section 14</u>; and

(k) **"R**" represents the rate of tax prescribed under <u>section 5</u>:

Provided that where the number in respect of the determination of the expression "(E-S)" in the formula is less than zero, that number must be deemed to be zero.

(2) The amount of tax payable by a taxpayer in respect of the generation of electricity from fossil fuels in respect of a tax period must be calculated in accordance with the formula:

$$\mathbf{X} = \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}$$

in which formula-

- (a) "X" represents the amount to be determined that must not be less than zero;
- (b) "**A**" represents the amount of tax payable in respect of a tax period determined in terms of subsection (1);
- (c) "**B**" represents the renewable energy premium in respect of a tax period, from the commencement of the tax period until 31 December 2022, constituted by an amount expressed in Rand determined by the Minister by notice in the *Gazette*; and
- (d) "**C**" represents an amount equal to the environmental levy contemplated in respect of electricity generated in the Republic in Section B of Part 3 of Schedule 1 to the Customs and Excise Act, 1964 (Act No. 91 of 1964), paid in respect of a tax year, until 31 December 2022.
- (3) For the purposes of this section "sequestrate" means the process of storing a greenhouse gas or increasing the carbon content of a carbon reservoir other than the atmosphere.

Part II – Allowances

7. Allowance for fossil fuel combustion

- (1) A taxpayer that conducts an activity in respect of fuel combustion emissions that is listed in Schedule 2 in the column "Activity/Sector" must receive an allowance in respect of those emissions, determined in terms of subsection (2).
- (2) The percentage of the allowance referred to in subsection (1) must be calculated by matching the line in which the activity is contained in the column "Activity/Sector" with the corresponding line in the column "Basic tax-free allowance for fossil fuel combustion emissions %" in Schedule 2 of the total percentage of greenhouse gas emissions in respect of a tax period in respect of that activity.

8. Allowance for industrial process emissions

- (1) A taxpayer that conducts an activity in respect of industrial process emissions that is listed in Schedule 2 in the column "Activity/Sector" must receive an allowance in respect of those emissions, determined in terms of subsection (2).
- (2) The percentage of the allowance referred to in subsection (1) must be calculated by matching the line in which the activity is contained in the column "Activity/Sector" with the corresponding line in the column "Basic tax-free allowance for process emissions %" in Schedule 2 of the total percentage of greenhouse gas emissions in respect of a tax period in respect of that activity.

9. Allowance in respect of fugitive emissions

(1) A taxpayer that conducts an activity that is listed in Schedule 2 in the column "Activity/Sector" must receive an allowance in respect of fugitive emissions in a percentage determined in terms of subsection (2).

(2) The allowance referred to in subsection (1) must be determined by matching the line in which the activity is contained in the column "Activity/Sector" with the corresponding line in the column "Fugitive emissions allowance %" in Schedule 2 in respect of the total percentage of greenhouse gas emissions in respect of the tax period in respect of that activity.

10. Trade exposure allowance

A taxpayer that is liable for the carbon tax in respect of greenhouse gas emissions must receive an allowance up to a maximum of ten per cent in respect of trade exposure as measured by value of exports plus imports divided by the total production by sector or subsector that must be determined in a manner prescribed by the Minister by regulation.

11. Performance allowance

(1) A taxpayer that has implemented measures to reduce the greenhouse gas emissions of that taxpayer in respect of a tax period must receive an allowance in respect of that tax period not exceeding five per cent of the total greenhouse gas emissions of that taxpayer during that tax period, determined in accordance with the formula:

$$\mathbf{Z} = (\mathbf{A} / \mathbf{B} - \mathbf{C}) \mathbf{x} \mathbf{D}$$

in which formula-

- (a) "Z" represents the percentage to be determined that must not be less than zero;
- (b) "A" represents—
 - (i) the sector or sub-sector greenhouse gas emissions intensity benchmark as prescribed by the Minister; or
 - (ii) where no value is prescribed as required by subparagraph (i), the number zero;
- (c) "B" represents the measured and verified greenhouse gas emissions intensity of a taxpayer in respect of a tax period;
- (d) "C" represents the number one; and
- (e) "D" represents the number 100.
- (2) For the purposes of this section "measures" include action taken to reduce greenhouse gas emissions in respect of a tax period.

12. Carbon budget allowance

- (1) Subject to subsection (2), a taxpayer that conducts an activity that is listed in Schedule 2 in the column "Activity/Sector", and participates in the carbon budget system during or before the tax period, must receive an additional allowance of five per cent of the total greenhouse gas emissions in respect of a tax period.
- (2) A taxpayer must only receive the allowance as contemplated in subsection (1) if the Department of Environmental Affairs confirms in writing that that taxpayer is participating in the carbon budget system as referred to in subsection (1).

13. Offset allowance

(1) Subject to subsection (2), a taxpayer must reduce the amount in respect of the carbon tax for which the taxpayer is liable in respect of a tax period by utilising carbon offsets as prescribed by the Minister.

(2) The reduction of the liability for the carbon tax allowed in terms of subsection (1) must not exceed so much of the percentage of the total greenhouse gas emissions of a taxpayer in respect of a tax period as is determined by matching the line in the column "Activity/Sector" with the percentage in the corresponding line of the column "Offsets allowance %" in Schedule 2.

Part III – Limitation of allowances

14. Limitation of sum of allowances

A taxpayer, other than a taxpayer in respect of which the maximum total allowance stipulated Schedule 2 constitutes 100 per cent, must only receive the sum of the allowances contemplated in Part II in respect of a tax period to the extent that the sum of those allowances does not exceed 95 per cent of the total greenhouse gas emissions of that taxpayer in respect of that tax period as determined in terms of the column "Maximum total allowances %" in Schedule 2.

Part IV – Administration, tax period and payment of tax

15. Administration

- (1) The Commissioner must administer the provisions of this Act as if the carbon tax were an environmental levy as contemplated in section 54A of the Customs and Excise Act, 1964 (<u>Act No. 91</u> of 1964), that must be collected and paid in terms of the provisions of that Act.
- (2) For the purposes of subsection (1), administrative actions, requirements and procedures for purposes of submission and verification of accounts, collection and payment of the carbon tax as an environmental levy or the performance of any duty, power or obligation or the exercise of any right in terms of this Act are, to the extent not regulated in this Act, regulated by the Customs and Excise Act, 1964.

16. Tax period

- (1) A taxpayer must pay the carbon tax for every tax period.
- (2) A tax period in relation to a taxpayer is—
 - (a) commencing on 1 June 2019 and ending on 31 December 2019; and
 - (b) subsequent to the period contemplated in paragraph (a), the period commencing on 1 January of each year and ending on 31 December of that year.

17. Payment of tax

A taxpayer must submit yearly environmental levy accounts and payments as prescribed by rule in terms of the Customs and Excise Act, 1964 (<u>Act No. 91 of 1964</u>), for every tax period.

Part V – Miscellaneous

18. Reporting

Despite Chapter 6 of the Tax Administration Act, the Commissioner must annually submit to the Minister a report, in the form and manner that the Minister may prescribe, within six months from the date of submission of environmental levy accounts and payments contemplated in <u>section 17</u> advising the Minister in respect of that tax period of—

(a) the total amount of greenhouse gas emissions reported in respect of which taxpayers are liable for the carbon tax; and

(b) the amount of carbon tax collected.

19. Regulations

The Minister must make regulations in respect of-

- (a) the sector or sub-sector greenhouse gas emissions intensity benchmark for the purposes of symbol "A" in section 11(1);
- (b) the manner of determining the amount of the trade exposure allowance contemplated in <u>section 10</u>; and
- (c) carbon offsets contemplated in <u>section 13</u> regarding—
 - (i) the projects or activities in respect of which an offset is generated;
 - (ii) the limitation on the carbon offset allowance;
 - (iii) offset duration periods;
 - (iv) the institution, board or body that must administer the offset allowance;
 - (v) the powers and responsibilities of the institution, board or body contemplated in subparagraph (iv);
 - (iv) the procedure that must be followed in claiming the offset allowance;

[Please note: numbering as in original.]

- (vi) the records that must be kept in respect of administering the offset allowance; and
- (vii) any other matter necessary for the regulation of the utilisation of the carbon offsets.

20. Amendment of laws

The Customs and Excise Act, 1964 (Act No. 91 of 1964), is hereby amended to the extent set out in Schedule 3.

21. Short title and commencement

This Act is called the Carbon Tax Act, 2019, and comes into operation on 1 June 2019.

Schedule 1

Table 1 - Fuel combustion emission factors

Stationary source category

Fuel type	CO ₂ (KGCO ₂ /TJ)	CH₄ (KGCH₄/TJ)	N ₂ O (KGN ₂ O/TJ)	Default calorific value (TJ/Tonne)
Anthracite	98 300	1	1.5	0.0267
Aviation gasoline	70 000	3	0.6	0.0443
Biodiesel	0	3	0.6	0.027
Biogasoline	0	3	0.6	0.027
Bitumen	80 700	3	0.6	0.0402
Blast furnace gas	260 000	1	0.1	0.00247
Diesel	74 100	3	0.6	0.043
Brown coal briquettes	97 500	1	1.5	0.0207
Charcoal	0	200	4	0.0295
Coal tar	80 700	1	1.5	0.028
Coke oven coke and lignite coke	107 000	1	1.5	0.0282
Coke oven gas	44 400	1	0.1	0.0387
Coking coal	94 600	1	1.5	0.0282
Crude oil	73 300	3	0.6	0.0438
Diesel	74 100	3	0.6	0.0381

Ethane	61 600	1	0.1	0.0464
Gas coke	107 000	1	0.1	0.0173
Gas works gas	44 400	1	0.1	0.0387
Industrial wastes	143 000	30	4	N/A
Jet gasoline	70 000	3	0.6	0.0443
Jet kerosene	71 500	3	0.6	0.0441
Landfill gas	0	1	0.1	0.0504
Lignite	101 000	1	1.5	0.0119
Liquefied petroleum gases	63 100	1	0.1	0.0473
Lubricants	73 300	3	0.6	0.0402
Municipal wastes (biomass fraction)	0	30	4	0.0116
Municipal wastes (non biomass fraction)	91 700	30	4	0.01
Naphtha	73 700	3	0.6	0.0445
Natural gas	56 100	1	0.1	0.048
Natural gas liquids	64 200	3	0.6	0.041
Oil shale and tar sands	107 000	1	1.5	0.0089
Orimulsion	77 000	3	0.6	0.0275
Other biogas	0	1	0.1	0.0504

Other bituminous coal	94 600	1	1.5	0.0243
Other kerosene	71 900	3	0.6	0.037
Other liquid biofuels	0	3	0.6	0.0274
Other petroleum products	73 300	3	0.6	0.0402
Other primary solid biomass	0	30	4	0.0116
Oxygen steel furnace gas	182 000	1	0.1	0.00706
Paraffin	71 900	3	0.6	0.0438
Paraffin waxes	73 300	3	0.6	0.0402
Patent fuel	97 500	1	1.5	0.0207
Peat	0	1	1.5	0.00976
Petrol	69 300	3	0.6	0.0443
Petroleum coke	97 500	3	0.6	0.0325
Refinery feedstock	73 300	3	0.6	0.043
Refinery gas	57 600	1	0.1	0.0495
Residual fuel oil (heavy fuel oil)	77 400	3	0.6	0.0404
Shale oil	73 300	3	0.6	0.0381
Sludge gas	0	1	0.1	0.0504
Sub-bituminous coal	96 100	1	1.5	0.0192

Sulphite lyes (black liquor)	95 300	3	2	0.0118
Waste oils	73 300	30	4	0.0402
White spirit and SBP	73 300	3	0.6	0.0402
Wood/wood waste	0	30	4	0.0156

Fuel type	CO ₂ (KGCO ₂ /TJ)	CH4 (KGCH4/TJ)	N ₂ O (KGN ₂ O/TJ)	Default calorific value (TJ/tonne)
Aviation gasoline	70 000	0.5	2	0.0443
Compressed natural gas	56 100	92	3	N/A
Diesel	74 100	4.15	28.6	0.0381
Diesel — (ocean- going ships)	74 100	7	2	0.0381
Diesel-rail	74 100	4.5	28.6	0.0381
Jet kerosene	71 500	0.5	2	0.0441
Kerosene	71 900	3	0.6	0.037
Liquefied natural gases	56 100	92	3	N/A
Liquefied petroleum gases	63 100	62	0.2	0.0473
Lubricants	73 300	3	0.6	0.0402
Natural gas	56 100	92	3	0.048
(Paraffin) other kerosene	71 900	3	0.6	0.0438
Other petroleum products	73 300	3	0.6	0.0402
Paraffin waxes	73 300	3	0.6	0.0402
Petrol	69 300	3.5	5.7	0.0443
Refinery gas	57 600	1	0.1	0.0495

Non-stationary / mobile source category activity

Residual fuel oil — (heavy fuel oil)	77 400	7	2	0.0404
Sub-bituminous coal — rail	96 100	2	1.5	0.0192
White spirit & SBP	73 300	3	0.6	0.0402

IPCC Code	Source category activity	CO ₂	CH4	N_2O
1B1	Solid fuels (M ³ /Tonne)			
1B1a	Coal mining and handling			
1B1ai	Underground coal mining	0.077	0.77	
	Underground post- mining (handling & transport)	0.018	0.18	
1B1aii	Surface coal mining	N/A	0	
	Surface post- mining (storage and transport)	N/A	0	
1B1c2	Charcoal production (Fuel wood input) (kgCH ₄ /TJ)	N/A	300	
	Charcoal production (Charcoal produced) (kgCH ₄ / TJ)	N/A	1000	
1B2	Oil and natural gas (Gg/ 10 ³ M ³ Total oil production)			
1B2b	Natural gas			
1B2b	Flaring and venting			

Table 2 - Fugitive emission factors

1.B.2.b.ii	Well drilling	0.0001	0.000033	ND
1.B.2.b.ii	Well testing	0.009	0.000051	0.00000068
1.B.2.b.ii	Well servicing	0.0000019	0.00011	ND
1B2b	Gas production (Gg/ 10 ⁶ M ³ Total oil production)			
1.B.2.b.iii.2	Fugitives	1.40E-05 to 8.20E-05	3.80E-04 to 2.30E-03	N/A
1.B.2.b.ii	Flaring	0.0012	0.00000076	0.00000021
	Gas processing (Gg/ 10 ⁶ M ³ Raw gas feed)			
1.B.2.b.iii.3	Sweet gas plants— fugitives	1.50E-04 to 3.20E-04	4.80E-04 to 1.03E-03	N/A
1.B.2.b.ii	Sweet gas plants— flaring	0.0018	0.0000012	0.00000025
1.B.2.b.iii.3	Sour gas plants— fugitives	0.0000079	0.000097	N/A
1.B.2.b.ii	Sour gas plants— flaring	0.0036	0.0000024	0.00000054
1.B.2.b.i	Sour gas plants— raw CO ₂ venting	0.063	N/A	N/A
1.B.2.b.iii.3	Deep cut extraction— fugitives	0.0000016	0.000011	N/A
1.B.2.b.ii	Deep cut extraction—flaring	0.00011	0.00000072	0.00000012
1.B.2.b.iii.3	Default—fugitives	1.20E-05 to 3.20E-04	1.50E-04 to 1.03E-03	N/A

1.B.2.b.ii	Default-flaring	0.003	0.000002	0.00000033
1.B.2.b.i	Default—raw CO ₂ venting	0.04	N/A	N/A
1B2b	Gas transmission & storage (Gg- CO ₂ /year/km			
1.B.2.b.iii.4	Transmission— fugitives	0.000016	0.0025	N/A
1.B.2.b.i	Transmission— venting	0.000085	0.0010	N/A
1.B.2.b.iii.4	Storage (Gg-CO ₂ / year/M ³)		2.32E-09	ND
1B2b	Gas distribution (Gg/ 10 ⁶ M ³ of utility sales)			
1.B.2.b.iii.5	All	0.000051	0.0011	ND
1B2b	Natural gas liquids transport (Gg/ 10 ³ M ³ condensate and pentanes plus)			
1.B.2.a.iii.3	Condensate	0.0000072	0.00011	
1.B.2.a.iii.3	Liquefied petroleum gas (Gg/ 10 ³ M ³ LPG)	0.00043	N/A	2.2 0E-09
1.B.2.a.iii.3	Liquefied natural gas (Gg/ 10 ⁶ M ³ marketable gas)	ND	ND	ND
1B2a	Oil			
1B2a	Oil production (Gg/ 10 ³ M ³			

	conventional oil production)			
1.B.2.a.iii.2	Conventional oil— fugitives (onshore)	1.10E-07 to 2.60E-04	1.50E-06 to 3.60E-03	N/A
1.B.2.a.iii.2	Conventional oil—fugitives (Offshore)	0.000000043	0.00000059	N/A
1.B.2.a.i	Conventional oil— venting	0.000095	0.00072	N/A
1.B.2.a.ii	Conventional oil— flaring	0.041	0.000025	0.00000064
1B2a	Oil production (Gg/ 10 ³ M ³ Heavy oil production)			
1.B.2.a.iii.2	Heavy oil/cold bitumen-fugitives	0.00054	0.0079	N/A
1.B.2.a.i	Heavy oil/cold bitumen-venting	0.0053	0.017	N/A
1.B.2.a.ii	Heavy oil/cold bitumen-flaring	0.022	0.00014	0.00000046
1B2a	Oil production (Gg/ 10 ³ M ³ thermal bitumen production)			
1.B.2.a.iii.2	Thermal oil production- fugitives	0.000029	0.00018	N/A
1.B.2.a.i	Thermal oil production- venting	0.00022	0.0035	N/A
1.B.2.a.ii	Thermal oil production-flaring	0.027	0.000016	0.0000024
1B2a	Oil production (Gg/ 10 ³ M ³			

	synthetic crude production from oilsands)			
1.B.2.a.iii.2	Synthetic crude (from oilsands)	ND	0.0023	ND
1.B.2.a.iii.2	Synthetic crude (oil shale)	ND	ND	ND
1B2a	Oil production (Gg/ 10 ³ M ³ total oil production)			
1.B.2.a.iii.2	Default total— fugitives	0.00028	0.0022	N/A
1.B.2.a.i	Default total— venting	0.00018	0.0087	N/A
1.B.2.a.ii	Default total— flaring	0.034	0.000021	0.00000054
1B2a	Oil upgrading (Gg/ 10 ³ M ³ Oil upgraded)			
1.B.2.a.iii.2	All	ND	ND	ND
1B2a	Oil transport (Gg/ 10 ³ M ³ oil transported by pipeline)			
1.B.2.a.iii.3	Pipelines	0.00000049	0.0000054	N/A
1B2a	Oil transport (Gg/ 10 ³ M ³ oil transported by tanker truck)			
1.B.2.a.i	Tanker trucks and rail cars—venting	0.000023	0.000025	N/A
	Oil transport (Gg/ 10 ³ M ³ oil			

	transported by tanker ships)			
1.B.2.a.i	Loading off-shore production on tanker ships— venting	ND	ND	ND
1B2a	Oil refining (Gg/ 10 ³ M ³ oil refined)			
1.B.2.a.iii.4	All		2.60E-06 to 4.10E-05	ND

IPCC Code	Source category activity/ raw material/ product tonne	Tonne CO ₂ / tonne product	Tonne CH4/ tonne product	Tonne N2O/ tonne product	Tonne C ₂ F ₆ / tonne product	Tonne CF ₄ / tonne product	Tonne SF 6/ tonne product
2A1	Cement production (per tonne of clinker)						
	Cement	0.52					
2A2	Lime production (per tonne of lime)						
	Quicklime/ high calcium lime	0.75					
	Dolomitic lime	0.77					
	Hydrated lime	0.59					
2A3	Glass production (per tonne glass)						
	Glass production	0.2					
2A4	Other process						

Table 3 - Industrial Processes and Product Use (IPPU) emission factors

	uses of carbonates				
2A4a	Ceramics (per tonne carbonate)				
	Calcite/ aragonite (CaCO ₃)	0.43971			
	Magnesite (MgCO ₃)	0.52197			
	Dolomite (CaMg(CO ₃) ₂	0.47732)))			
	Siderite (FeCO ₃)	0.37987			
	Ankerite (Ca(Fe,Mg,M (CO ₃) ₂))	0.40822 to In) .47572			
	Rhodochrosi (MnCO ₃)	te0.38286			
	Sodium carbonate/ soda ash (Na ₂ CO ₃)	0.41492			
2A4b	Other uses of soda ash (per tonne carbonate)				
	Calcite/ aragonite (CaCO ₃)	0.43971			
	Magnesite (MgCO ₃)	0.52197			

Dolomite (CaMg(CO ₃) ₂	0.47732))			
Siderite (FeCO ₃)	0.37987			
Ankerite (Ca(Fe,Mg,M (CO ₃) ₂))	0.40822 to n).47572			
Rhodochrosi (MnCO ₃)	te0.38286			
Sodium carbonate/ soda ash (Na ₂ CO ₃)	0.41492			
2A4c Non metallurgical magnesia production (per tonne carbonate)				
Calcite/ aragonite (CaCO ₃)	0.43971			
Magnesite (MgCO ₃)	0.52197			
Dolomite (CaMg(CO ₃) ₂	0.47732))			
Siderite (FeCO ₃)	0.37987			
Ankerite (Ca(Fe,Mg,M (CO ₃) ₂))	0.40822 to nØ.47572			
Rhodochrosi (MnCO ₃)	tæ.38286			

	Sodium carbonate/ soda ash (Na ₂ CO ₃)	0.41492			
2A5	Other (per tonne carbonate)				
	Calcite/ aragonite (CaCO ₃)	0.43971			
	Magnesite (MgCO ₃)	0.52197			
	Dolomite (CaMg(CO ₃) ₂	0.47732))			
	Siderite (FeCO ₃)	0.37987			
	Ankerite (Ca(Fe,Mg,M (CO ₃) ₂))	0.40822 to n 0 .47572			
	Rhodochrosi (MnCO ₃)	te0.38286			
	Sodium carbonate/ soda ash (Na ₂ CO ₃)	0.41492			
2B1	Ammonia production (per tonne NH ₃)				
	Modern plants- conventional reforming (natural gas)	1.694			

	Excess air reforming (natural gas)	1.666			
	Autothermal reforming (natural gas)	1.694			
	Partial oxidation	2.772			
	Average value natural gas (mixture of modern & old)	2.104			
	Average value (partial oxidation)	3.273			
2B2	Nitric acid production (per tonne nitric acid)				
	Plants with NSCR (all processes)		0.002		
	Plants with process (integrated or tail gas NO ₂ destruction)		0.0025		
	Atmospheric pressure plants		0.005		

(low pressure			
plants)			
Medium pressure combustion plants (medium pressure)	0.007		
High pressure plants (high pressure)	0.009		
2B3 Adipic acid production (per tonne adipic acid uncontrolled)			
Nitric acid oxidation (adipic acid)	0.3		
2B4 Caprolactam, glyoxal and glyoxylic acid production (per tonne produced)			
Caprolactam production (raschig)	0.009		
Glyoxal production	0.1		
Glyoxylic acid production	0.02		

2B5	Carbide production (per tonne raw material used)				
	Silicon carbide production	2.3	0.0102		
	Petroleum coke use	1.7			
2B5	Carbide production (per tonne carbide produced)				
	Silicon carbide production (carbide produced)	2.62	0.0116		
	Petroleum coke use	1.09			
	Use of product	1.1			
2B6	Titanium dioxide production (per tonne product)				
	Titanium slag	Not available			
	Synthetic rutile	1.43			

	Rutile titanium dioxide (chloride route)	1.34			
2B7	Soda ash production (per tonne of soda ash or trona)				
	Natural soda ash output	0.138			
	Natural soda ash (trona used)	0.097			
2B8	Petrochemica and carbon black production	al			
2B8a	Methanol production (per tonne methanol produced)				
	Conventiona steam reforming without primary reformer (natural gas feedstock)	1 0.67	0.0023		
	Conventiona steam reforming with pri- mary reformer	1 0.497	0.0023		

(natu- ral gas feedstock)				
Conventiona steam reforming lurgi con- ventional process (natural gas feed- stock)	1 0.385	0.0023		
Conventiona steam reforming lurgi con- ventional process (natural gas + CO ₂ feedstock)	1 0.267	0.0023		
Conventiona steam reforming lurgi low pressure process (natu- ral gas feedstock)	1 0.267	0.0023		
Conventiona steam reforming lurgi com- bined process (natural gas feedstock)	1 0.396	0.0023		
Conventiona steam reforming lurgi mega methanol process (natural gas feed- stock)	l 0.31	0.0023		

	Partial oxidation pro- cess (oil feedstock)	1.376	0.0023		
	Partial oxidation process (coal feedstock)	5.285	0.0023		
	Partial oxidation process (lignite feedstock)	5.02	0.0023		
	Conventional steam reforming with inte- grated ammonia pro- duction (natural gas feedstock)	1.02	0.0023		
2B8b	Steam cracking ethylene production (per tonne ethylene produced)				
	Ethylene (total pro- cess & energy feedstock use)— naptha	1.73	0.003		
	Ethylene (total pro- cess & energy	2.29	0.003		

feedstock use)—gas oil				
Ethylene (total pro- cess & energy feedstock use)— ethane	0.95	0.006		
Ethylene (total pro- cess & energy feedstock use)— propane	1.04	0.003		
Ethylene (total pro- cess & energy feedstock use)— butane	1.07	0.003		
Ethylene (total pro- cess & energy feedstock use)— other	1.73	0.003		
Ethylene (process feedstock use)— naphtha	1.73	0.003		
Ethylene(pro feedstock use)—gas oil	ocês \$ 7	0.003		
Ethylene (process feedstock	0.76	0.006		

use)— ethane				
Ethylene (process feedstock use)— propane	1.04	0.003		
Ethylene (process feedstock use)— butane	1.07	0.003		
Ethylene (process feedstock use)— other	1.73	0.003		
Ethylene (supplemen- tal fuel- energy feedstock) use—gas oil	0.12	0.003		
Ethylene (supplemen- tal fuel- energy feedstock) use— ethane	0.19	0.006		
2B8c Ethylene dichloride and vinyl chloride monomer (per tonne edc produced or tonne vcm product produced)				
Direct chorination	0.191	0.0000226		

	process (EDC)				
	Oxychlorinat process (EDC)	ci@n202	0.0000226		
	Balanced process (default)— EDC	0.196	0.0000226		
2B8c	Ethylene dichloride and vinyl chloride monomer (per tonne VCM produced or tonne VCM product produced)				
	Direct chlorination process (VCM)	0.286	0.0000226		
	Oxychlorinat process (VCM)	:i @n 302	0.0000226		
	Balanced process (default)- VCM	0.294	0.0000226		
2B8d	Ethylene oxide (per tonne ethylene oxide produced)				
	Air process (default) —catalyst	0.863	0.00179		

	default (70)				
	Air process (default) —catalyst (75)	0.663	0.00179		
	Air process (default) —catalyst (80)	0.5	0.00179		
	Oxygen process (default) —catalyst default (75)	0.663	0.00179		
	Oxygen process- catalyst (80)	0.5	0.00179		
	Oxygen process- catalyst (85)	0.35	0.00179		
	All ethylene oxide processes —thermal treatment	N/A	0.00079		
2B8e	Acrylonitrile (per tonne acrylonitrile produced)				
	Direct ammoxidatio with secondary products burned	1 on	0.00018		

	for energy recovery				
	or flared (default)				
	Direct ammoxidation with acetonitrile burned for energy recovery or flared	0.83 on	0.00018		
	Direct ammoxidation with acetonitrile & hydrogen cyanide recovered as product	0.79 on	0.00018		
2B8f	Carbon black produc- tion (per tonne carbon black produced)				
	Furnace black process (default) —Primary Feedstock	1.96	0.00006		
	Thermal black process- primary feedstock	4.59	0.00006		
	Acetylene black process- primary feedstock	0.12	0.00006		

	Furnace black process (default)— secondary feedstock	0.66	0.00006		
	Thermal black process- secondary feedstock	0.66	0.00006		
	Acetylene black process- secondary feedstock	0.66	0.00006		
	Furnace black process (default)— total feed- stock	2.62	0.00006		
	Thermal black pro- cess—total feedstock	5.25	0.00006		
	Acetylene black pro- cess-total feedstock	0.78	0.00006		
	All carbon black pro- cesses (no thermal treatment)	N/A	0.0287		
2C1	Iron and steel produc- tion (per tonne product produced)				

	Sinter production	0.2	0.00007		
	Coke oven	0.56	0.0000001		
	Pig iron production	1.35			
	Direct reduced iron (DRI) production	0.001/TJ (NG)			
	Pellet production	0.03			
	Basic oxygen furnace	1.46			
	Electric arc furnace	0.08			
	Open hearth furnace	1.72			
	Global average	1.06			
2C2	Ferroalloys produc- tion (per tonne pro- duction)				
	Ferrosilicon (45%) SI	2.5			
	Ferrosilicon (65%) SI	3.6	0.001		
	Ferrosilicon (75%) SI	4	0.001		

	Ferrosilicon (90%) SI	4.8	0.0011			
	Ferromangar (7% C)	netes				
	Ferromangar (1% C)	netes				
	Silicomanga	nekæ				
	Silicon metal	5	0.0012			
	Ferrochromi (standalone)					
	Ferrochromi (with sinter plant)	un b .6				
2C3	Aluminium production (per tonne aluminium produced)					
	Prebake	1.6				
	Soderberg	1.7				
	CWPB			0.00004	0.0004	
	SWPB			0.0004	0.0016	
	VSS			0.00004	0.0008	
	HSS			0.00003	0.0004	
2C4	Magnesium production (per tonne					

	magnesium produced)				
	Dolomite	5.13			0.001
	Magnesite	2.83			0.001
2C5	Lead production (per tonne product)				
	Imperial smelt furnace (ISF) production	0.59			
	Direct smelting pro- duction	0.25			
	Treatment of second- ary raw materials	0.2			
	Default EF	0.52			
2C6	Zinc production (per tonne product)				
	Waelz kiln	3.66			
	Pyrometallu	rg ûc4 B			
	Default EF	1.72			

Schedule 2

IPCC code	Activity/ ' sector		tax- free allowance for fossil	free allowance for process emissions %					allowance	Maximum total allow- ances %
1	Energy									
1A	Fuel combustio activities									
1A1	Energy industries (including heat and electricity recovery from waste))r)•								
1A1a	Main activity electric- ity and heat produc- tion (includin com- bined heat and power plants)	10 MW(th)	60	0	0	10	5	5	10	90
1A1b	Petroleu refining	m10 MW(th)	60	0	0	10	5	5	10	90

1A1c	Manufac of solid fuels and other energy industrie	MW(th)	60	0	0	10	5	5	10	90
1A2 M	anufacturi in- dustries and con- struction (including heat and electricity recovery from waste)	(60	0	0	10	5	5	10	90
1A2a	Iron and steel	10 MW(th)	60	0	0	10	5	5	10	90
1A2b	Non- Ferrous metals	10 MW(th)	60	0	0	10	5	5	10	90
1A2c	Chemica	ls10 MW(th)	60	0	0	10	5	5	10	90
1A2d	Pulp, paper and print	10 MW(th)	60	0	0	10	5	5	10	90
1A2e	Food processin beverage and tobacco	10 ngMW(th) s	60	0	0	10	5	5	10	90
1A2f	Non- Metallic minerals	10 MW(th)	60	0	0	10	5	5	10	90

1A2g	Transport 10 equipmentMW(th)	60	0	0	10	5	5	10	90
1A2h	Machinery10 MW(th)	60	0	0	10	5	5	10	90
1A2i	Mining 10 and MW(th) quarrying	60	0	0	10	5	5	10	90
1A2j	Wood 10 and MW(th) wood products	60	0	0	10	5	5	10	90
1A2k	Constructi bo MW(th)	60	0	0	10	5	5	10	90
1A2l	Textile 10 MW and (th) leather	60	0	0	10	5	5	10	90
1A2m	Brick 4 manufactu riilij on bricks a month	60	0	0	10	5	5	10	90
1A3	Transport								
1A3a	Domestic 100 aviation 000 litres/ year	75	0	0	0	5	5	10	95
1A3b	Road N/A transportation	75	0	0	0	0	5	10	90
1A3c	Railways 100 000 litres/ year	75	0	0	0	0	5	10	90
1A3d	Water- 100 borne 000 navigationlitres/ year	75	0	0	0	0	5	10	90

1A3e	Other transpor	N/A tation	75	0	0	0	0	5	10	90
1A4 r	Other sectors (including heat and electricity recovery fro waste)									
1A4a	Commer	ciál) onMalW(th)	60	0	0	10	5	5	10	90
1A4b	Resident	ia l 0 MW(th)	100	0	0	0	0	0	0	100
1A4c	Agricultu forestry/ fishing/ fish farms	ır ê 0 MW(th)	60	0	0	10	5	5	10	90
1A5 r	Non- specified (including heat and electricity ecovery fro waste)									
1A5a	Stationa	ry10 MW(th)	60	0	0	10	5	5	10	90
1A5b	Mobile	N/A	60	0	0	10	5	5	10	90
1A5c	Multilate operation		60	0	0	10	5	5	10	90
1B	Fugitive emissions from fuels									
1B1	Solid fuels									

								1	
1B1a	Coal None mining and handling	60	0	10	10	5	5	5	95
1B1ai	Undergrou mo he mines including flaring of drained methane (excluding abandoned mines)	60	0	10	10	5	5	5	95
1B1aii	Surface none mines	60	0	10	10	5	5	5	95
1B1b	Uncontrol N dA combustion, and burning coal dumps	100	0	0	0	0	0	0	100
1B1c	Solid fuel transformation								
1B1c1	Coke none production processes	60	0	10	10	5	5	5	95
1B1c2	Charcoal none production processes	60	0	10	10	5	5	5	95
1B1c3	Any none other solid fuel transformation involving fossil and organic carbon based fuels (e.g. biofuel productions)	60	0	10	10	5	5	5	95

1B2	Oil and natural gas									
1B2a	Oil	none	60	0	10	10	5	5	5	95
1B2ai	Venting	none	60	0	10	10	5	5	5	95
1B2aii	Flaring	none	60	0	10	10	5	5	5	95
1B2aiii	All other	none	60	0	10	10	5	5	5	95
1B2b	Natural gas	none	60	0	10	10	5	5	5	95
1B2bi	Venting	none	60	0	10	10	5	5	5	95
1B2bii	Flaring	none	60	0	10	10	5	5	5	95
1B2biii	All other	none	60	0	10	10	5	5	5	95
1B3 ene	Other emissions from rgy produc									
1B3a	Coal- to- liquids processe	none s	60	0	10	10	5	5	5	95
1B3b	Gas- to- liquids processe	none s	60	0	10	10	5	5	5	95
1B3c	Gas- to- chemical processe		60	0	10	10	5	5	5	95
1C	Carbon dioxide									

	transport and storage									
1C1	Transpor of CO ₂	t none	60	0	10	10	5	5	5	95
1C1a	Pipelines	10 000 tons CO ₂ / year	60	0	10	10	5	5	5	95
1C1b	Ships	10 000 tons CO ₂ / year	60	0	10	10	5	5	5	95
1C1c	Other (please specify)	10 000 tons CO ₂ / year	60	0	10	10	5	5	5	95
1C2	Injection and storage									
1C2a	Injection	10 000 tons CO ₂ / year	60	0	10	10	5	5	5	95
1C2b	Storage	10 000 tons CO ₂ / year	60	0	10	10	5	5	5	95
1C3	Other	N/A	60	0	10	10	5	5	5	95
2	Industrial processes and produc use	t								
2A	Mineral industry									

2A1	Cement producti	none on	0	70	0	10	5	5	5	95
2A2	Lime producti	none on	0	70	0	10	5	5	5	95
2A3	Glass producti	none on	0	70	0	10	5	5	5	95
2A4	Other process uses of carbonat	es	0	70	0	10	5	5	5	95
2A4a	Ceramics	s N/A	0	70	0	10	5	5	5	95
2A4b	Other uses of soda ash	N/A	0	70	0	10	5	5	5	95
2A4c	Non metallur magnesia producti	a	0	70	0	10	5	5	5	95
2A4d	Other (please specify)	N/A	0	70	0	10	5	5	5	95
2A5	Other (please specify)	N/A	60	0	0	10	5	5	10	90
2B	Chemical industry									
2B1	Ammoni producti		0	70	0	10	5	5	5	95
2B2	Nitric acid producti	none on	0	70	0	10	5	5	5	95

2B3	Adipic none acid production	0	70	0	10	5	5	5	95
2B4	Caprolact amo ne glyoxal and glyoxylic acid production	0	70	0	10	5	5	5	95
2B5	Carbide none production	0	70	0	10	5	5	5	95
2B6	Titanium none dioxide production	0	70	0	10	5	5	5	95
2B7	Soda none ash production	0	70	0	10	5	5	5	95
	trochemical and carbon ck production								
2B8a	Methanol none	0	70	0	10	5	5	5	95
2B8b	Ethylene none	0	70	0	10	5	5	5	95
2B8c	Ethylene none dichloride and vinyl chloride monomer	0	70	0	10	5	5	5	95
2B8d	Ethylene none oxide	0	70	0	10	5	5	5	95
2B8e	Acrylonitr ile ne	0	70	0	10	5	5	5	95
2B8f	Carbon none black	0	70	0	10	5	5	5	95
2B8g	Hydrogen none production	0	70	0	10	5	5	5	95

2B9F	luorochemic production									
2B9a	By- product emissions	none S	0	70	0	10	5	5	5	95
2B9b	Fugitive emissions		0	70	0	10	5	5	5	95
2B10	Other (please specify)	N/A	0	70	0	10	5	5	5	95
2C	Metal industry									
2C1	Iron and steel productio	none on	0	70	0	10	5	5	5	95
2C2	Ferroallog productio		0	70	0	10	5	5	5	95
2C3	Aluminiu productio		0	70	0	10	5	5	5	95
2C4	Magnesiu productio		0	70	0	10	5	5	5	95
2C5	Lead productio	none on	0	70	0	10	5	5	5	95
2C6	Zinc productio	none on	0	70	0	10	5	5	5	95
2C7	Other (please specify)	N/A	0	60	0	10	5	5	10	90
2D	Non- energy products from fuels									

	and solven use	t								
2D1	Lubrican use	t N/A	0	60	0	10	5	5	10	90
2D2	Paraffin wax use	N/A	0	60	0	10	5	5	10	90
2D3	Solvent use	N/A	0	60	0	10	5	5	10	90
2D4	Other (please specify)	N/A	0	60	0	10	5	5	10	90
2E	Electronic: industry	5								
2E.1	Integrate circuit or semicono		0	60	0	10	5	5	10	90
2E.2	TFT flat panel display	N/A	0	60	0	10	5	5	10	90
2E.3	Photovol	ta ìi ⁄a	0	60	0	10	5	5	10	90
2E.4	Heat transfer fluid	N/A	0	60	0	10	5	5	10	90
2E.5	Other (please specify)	N/A	0	60	0	10	5	5	10	90
2F	Product uses as substitutes for ozone depleting substances									

2F1	Refrigeratic and air conditionir									
2F1a	Refrigera and stationar air conditior	У	0	60	0	10	5	5	10	90
2F1b	Mobile air conditio	N/A ning	0	60	0	10	5	5	10	90
2F2	Foam blowing agents	N/A	0	60	0	10	5	5	10	90
2F3	Fire protectic	N/A on	0	60	0	10	5	5	10	90
2F4	Aerosols	N/A	0	60	0	10	5	5	10	90
2F5	Solvents	N/A	0	60	0	10	5	5	10	90
2F6	Other applicati (please specify)	N/A ons	0	60	0	10	5	5	10	90
2G	Other product manufactur and use	e								
2G1	Electrical equipmen									
2G1a	Manufac of electrica equipme	l	0	60	0	10	5	5	10	90

2G1b	Use of electrical equipmen	N/A nt	0	60	0	10	5	5	10	90
2G1c	Disposal of electrical equipmen	ıt	0	60	0	10	5	5	10	90
2G2	SF ₆ and PFCs from other product uses	N/A								
2G2a	Military applicatio		0	60	0	10	5	5	10	90
2G2b	Accelerate	o N s∕A	0	60	0	10	5	5	10	90
2G2c	Other (please specify)	N/A	0	60	0	10	5	5	10	90
2G3	N ₂ O from product uses	N/A								
2G3a	Medical applicatio		0	60	0	10	5	5	10	90
2G3b	Propellan for pressure and aerosol products	tN/A	0	60	0	10	5	5	10	90
2G3c	Other (please specify)	N/A	0	60	0	10	5	5	10	90
2G4	Other (please specify)	N/A	0	60	0	10	5	5	10	90

2H	Other									
2H1	Pulp and paper industry	N/A	0	60	0	10	5	5	10	90
2H2	Food and beverage industry	N/A s	0	60	0	10	5	5	10	90
2H3	Other (please specify)	N/A	0	60	0	10	5	5	10	90
3	Agriculture forestry, and other land use	2,								
3A	Livestock									
3A1	Enteric fermentatio	'n								
3A1a	Cattle	N/A	100	0	0	0	0	0	0	100
3A1b	Buffalo	N/A	100	0	0	0	0	0	0	100
3A1c	Sheep	N/A	100	0	0	0	0	0	0	100
3A1d	Goats	N/A	100	0	0	0	0	0	0	100
3A1e	Camels	N/A	100	0	0	0	0	0	0	100
3A1f	Horses	N/A	100	0	0	0	0	0	0	100
3A1g	Mules and asses	N/A	100	0	0	0	0	0	0	100
3A1h	Swine	N/A	100	0	0	0	0	0	0	100

3A1j	Other (please specify)	N/A	100	0	0	0	0	0	0	100
3A2 1	Manure nanageme	nt								
3A2a	Cattle	N/A	100	0	0	0	0	0	0	100
3A2b	Buffalo	N/A	100	0	0	0	0	0	0	100
3A2c	Sheep	N/A	100	0	0	0	0	0	0	100
3A2d	Goats	N/A	100	0	0	0	0	0	0	100
3A2e	Camels	N/A	100	0	0	0	0	0	0	100
3A2f	Horses	N/A	100	0	0	0	0	0	0	100
3A2g	Mules and asses	N/A	100	0	0	0	0	0	0	100
3A2h	Swine	N/A	100	0	0	0	0	0	0	100
3A2i	Poultry	N/A	100	0	0	0	0	0	0	100
3A2j	Other (please specify)	N/A	100	0	0	0	0	0	0	100
3B	Land									
3B1	Forest land									
3B1a	Forest land remainin forest land	100 hectares igof planta natural fo		0	0	0	0	0	0	100
3B1b	Land converte to	100 d Hectares	100	0	0	0	0	0	0	100

	forest land	of planta natural f								
3B2	Cropland									
3B2a	Cropland remaining cropland		100	0	0	0	0	0	0	100
3B2b	Land converted to cropland	N/A I	100	0	0	0	0	0	0	100
3B3	Grassland									
3B3a	Grassland remaining grassland	g	100	0	0	0	0	0	0	100
3B3b	Land converted to grassland		100	0	0	0	0	0	0	100
3B4	Wetlands									
3B4a	Wetlands remaining wetlands		100	0	0	0	0	0	0	100
3B4b	Land converted to wetlands	N/A l	100	0	0	0	0	0	0	100
3B5	Settlements	5								
3B5a	Settlemen remaining settlemer	g	100	0	0	0	0	0	0	100
3B5b	Land converted to settlemer		100	0	0	0	0	0	0	100

3B6	Other land									
3B6a	Other land remainin other land	N/A og	100	0	0	0	0	0	0	100
3B6b	Land converte to other land	N/A d	100	0	0	0	0	0	0	100
3C (Aggregate sources and non- CO2 emissio sources or land	ns								
3C1	Emissions from biomass burning									
3C1a	Biomass burning in forest lands	N/A	100	0	0	0	0	0	0	100
3C1b	Biomass burning in cropland		100	0	0	0	0	0	0	1 00
3C1c	Biomass burning in grassland	N/A ls	100	0	0	0	0	0	0	100
3C1d	Biomass burning in all other land	N/A	100	0	0	0	0	0	0	100

3C2	Liming	N/A	100	0	0	0	0	0	0	100
3C3	Urea applicatio	N/A on	100	0	0	0	0	0	0	100
3C4	Direct N ₂ O emissions from managed soils	N/A S	100	0	0	0	0	0	0	100
3C5	Indirect N ₂ O emissions from managed soils	N/A 3	100	0	0	0	0	0	0	100
3C6	Indirect N ₂ O emissions from manure managem		100	0	0	0	0	0	0	100
3C7	Rice cultivatio	N/A ons	100	0	0	0	0	0	0	100
3C8	Other (please specify)	N/A	100	0	0	0	0	0	0	100
3D	Other									
3D1	Harvested wood products	1N/A	100	0	0	0	0	0	0	100
3D2	Other (please specify)	N/A	100	0	0	0	0	0	0	100
4	Waste									

4 A	Solid waste disposal									
4A1	Managed waste disposal sites	Receivin, 5 tonnes per day or a total capacity of 25000 to		0	0	0	0	0	0	100
4A2	Unmanag waste disposal sites	eReceivin 5 tonnes per day or a total capacity of 25000 to		0	0	0	0	0	0	100
4A3	Uncatego waste disposal sites	r Bec eivin, 5 tonnes per day or a total capacity of 25000 to		0	0	0	0	0	0	100
4B	Biological treatment of solid waste		100	0	0	0	0	0	0	100
4C	Incineration and open burning of waste	n								
4C0	Waste — Pyrolysis	100 kg/ hour	100	0	0	0	0	0	0	100

4C1	Waste incinerat	1 id n nne per hour	60	0	0	10	5	5	10	90
4C2	Open burning of waste	N/A	100	0	0	0	0	0	0	100
4D	Wastewater treatment and discharge	r								
4D1	Domestic wastewat treatmen and discharge	eMillion tlitres/ day	100	0	0	0	0	0	0	100
4D2	Industria wastewat treatmen and discharge	e c ubic t metres per day	100	0	0	0	0	0	0	100
4E	Other (please specify)	N/A								
5	Other									
5A	Indirect N ₂ O emissions from the atmospheri deposition of nitrogen in NO _X and NH ₃		60	0	0	10	5	5	10	90

5B	Other (please specify)	N/A	60	0	0	10	5	5	10	90	
----	------------------------------	-----	----	---	---	----	---	---	----	----	--

Schedule 3 (Section 20)

1. Amendment of section 1 of Act 91 of 1964, as amended by section 1 of Act 95 of 1965, section 1 of Act 57 of 1966, section 1 of Act 105 of 1969, section 1 of Act 98 of 1970, section 1 of Act 71 of 1975, section 1 of Act 112 of 1977, section 1 of Act 110 of 1979, sections 1 and 15 of Act 98 of 1980, section 1 of Act 89 of 1984, section 1 of Act 84 of 1987, section 32 of Act 60 of 1989, section 51 of Act 68 of 1989, section 1 of Act 59 of 1990, section 1 of Act 19 of 1994, section 34 of Act 34 of 1997, section 57 of Act 30 of 1998, section 46 of Act 53 of 1999, section 58 of Act 30 of 2000, section 60 of Act 59 of 2000, section 113 of Act 60 of 2001, section 131 of Act 45 of 2003, section 66 of Act 32 of 2004, section 85 of Act 31 of 2005, section 7 of Act 21 of 2006, section 10 of Act 9 of 2007, section 4 of Act 61 of 2008 and section 1 of Act 32 of 2014

Section 1 of the Customs and Excise Act, 1964, is hereby amended by the insertion in subsection (1) after the definition of "bulk goods terminal operator" of the following definition:

" 'Carbon Tax Act' means an Act of Parliament that makes provision for a carbon tax;".

2. Amendment of section 54A of Act 91 of 1964, as inserted by section 139 of Act 45 of 2003 and renumbered by section 32 of Act 16 of 2004

The following section is hereby substituted for section 54A of the Customs and Excise Act, 1964:

"54A. Imposition of environmental levy

A levy known as the environmental levy shall be-

- (a) <u>leviable on such imported goods and goods manufactured in the Republic</u> <u>as may be specified in any item of Part 3 of Schedule No. 1; and</u>
- (b) <u>collected and paid in respect of carbon tax imposed in terms of the Carbon</u> <u>Tax Act, 2019.".</u>